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I. COMPLEX NUMBERS

A. GETTING STARTED

1. Definitions, Cartesian representation

Complex numbers are a natural addition to the number system. Consider the equation

x2 = −1.

This is a polynomial in x2 so it should have 2 roots. To make this work we define i as the square
root of −1:

i2 = −1

so
x2 = i2; x = ±i.

A general complex number is written as

z = x+ iy.

x is the real part of the complex number, sometimes written Re(z).
y is the imaginary part of the complex number, sometimes written Im(z).
The complex conjugate of z is defined as z∗ = x− iy.

2. Argand diagram

A pair of numbers (x, y) are needed to specify a complex number z. Therefore z can be repre-
sented point in a 2D plane called the complex plane or Argand diagram. It is sometimes
helpful to think of z = x+ iy as a vector from the origin to (x,y).

Y=Im(z) 

x=Re(z) 

z=x+iy 

r 

𝜗 

Figure 1: The complex plane
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3. Polar form

A complex number z can also be written in terms of polar co-ordinates (r, θ) where

x = r cos θ , y = r sin θ.

r2 = x2 + y2, θ = tan−1
y

x
.

so
z = x+ iy = r(cos θ + i sin θ).

r is the modulus of z written as |z | or mod(z).
θ is the argument of z written as arg(z).

Examples

z = 1 + i =
√

2(cosπ/4 + i sinπ/4), z = −1 +
√

3i = 2(cos 2π/3 + i sin 2π/3)

4. Complex exponentials

It is often very useful to write a complex number as an exponential with a complex argu-
ment. To justify why we can do this write the polar expression for z and expand the sin and
cos using a Taylor expansion:

z = r(cos θ + i sin θ) = r(1− θ2

2!
+
θ4

4!
+ . . .) + ir(θ − θ3

3!
+ . . .)

= r(1 + iθ − θ2

2!
− iθ

3

3!
+
θ4

4!
− . . .)

= r(1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+ . . .) ≡ reiθ.

We have ended up with the Euler equation

reiθ = z = r(cos θ + i sin θ). (1)

Taking the complex conjugate

re−iθ = z = r(cos θ − i sin θ). (2)

Adding/subtracting Eqns. (1) and (2) gives a pair of very useful identities which you should
learn:

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
. (3)

5. Arithmetic manipulation

The next job is to define how to add, subtract, multiply and divide complex numbers. If
z1 = x1 + iy1 and z2 = x2 + iy2 then

z1 + z2 = x1 + x2 + i(y1 + y2), z1 − z2 = x1 − x2 + i(y1 − y2),

z1z2 = (x1 + iy1)(x2 + iy2) = x1x2 − y1y2 + i(x1y2 + y1x2).
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To divide two complex numbers note that

zz∗ = (x+ iy)(x− iy) = x2 + y2 ≡|z |2

is real. So multiplying a quotient of complex numbers by the complex conjugate of the denom-
inator gives a tractable expression

z1
z2

=
x1 + iy1
x2 + iy2

=
(x1 + iy1)(x2 − iy2)
(x2 + iy2)(x2 − iy2)

=
(x1x2 + y1y2) + i(y1x2 − x1y2)

x22 + y22
.

There are simpler formulas for multiplication and division in polars. If z1 = r1e
iθ1 and z2 = r2e

iθ2

z1z2 = r1r2e
i(θ1+θ2),

z1
z2

=
r1
r2
ei(θ1−θ2).

These expressions immediately imply

|z1z2 |=|z1 | |z2 |, | z1
z2
|= |z1 |
|z2 |

.

arg(z1z2) = arg(z1) + arg(z2), arg

(
z1
z2

)
= arg(z1)− arg(z2).

6. Curves in the complex plane

a 

(i) 

(iii) 
 

(ii) 
 

Figure 2: Curves in the complex plane. (i) |z |= 1, (ii) arg(z) = π/6, (iii) |z − a |= 3, a real.

If it is hard to identify a curve by inspection write z as x+ iy. For the example (iii) in Fig. 2

|z − a |=|x− a+ iy |=
√

(x− a)2 + y2 = 3.

So this is the curve (x− a)2 + y2 = 9 which is a circle, center (a, 0), radius 3.
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B. DE MOIVRE’S THEOREM

1. De Moivre’s theorem

De Moivre’s theorem states

zn = {r(cos θ + i sin θ)}n = rn(cosnθ + i sinnθ).

This follows immediately from the properties of complex exponentials:

l.h.s. = (reiθ)n = rneinθ = r.h.s.

2. Trig. functions of multiple angles → powers of trig. functions

As an example we will use de Moivre’s theorem to prove

sin 3θ = 3 cos2 θ sin θ − sin3 θ.

Consider

cos 3θ+ i sin 3θ = e3iθ = (eiθ)3 = (cos θ+ i sin θ)3 = cos3 θ+3i cos2 θ sin θ−3 cos θ sin2 θ− i sin3 θ.

Equating the imaginary parts of the l.h.s. and the r.h.s. of this expression gives the required
result. Equating the real parts gives a similar expression for cos 3θ.

3. Powers of trig. functions → trig. functions of multiple angles

If instead we want to prove

sin3 θ = −1

4
(sin 3θ − 3 sin θ)

the easiest way is to use Eq. (3) to write

sin3 θ =

(
eiθ − e−iθ

2i

)3

=
e3iθ − 3eiθ + 3e−iθ − e−3iθ

(2i)3

=
1

(2i)2

{
(e3iθ − e−3iθ)

2i
− 3

(eiθ − e−iθ)
2i

}
= −1

4
(sin 3θ − 3 sin θ).

4. Powers and roots of complex numbers

To find powers and root of complex numbers it is almost always easiest to write them as complex
exponentials and it is often important to include a factor e2πir where r is an integer. This is
just unity but, as we shall see, it is needed to obtain the correct number of roots. It is good
practice to always check that the number of roots is indeed correct.

Example 1: To find the cube roots of 1 + i write 1 + i in polar form, including a factor e2πir:

1 + i =
√

2e(iπ/4+2πir).

Take the cube root of the modulus as usual (
√

2
1/3

= 21/6, it’s easy to forget this step) and the
cube root of the exponential by dividing the exponent by 3

z = (1 + i)1/3 = 21/6e2πi(1/24+r/3)
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We expect 3 distinct roots, because we are solving a cubic equation z3 = 1 + i, so r = 0, 1, 2,
say. (Check that r = 3 gives the same value for z as r = 0). Without the e2πir term we would
have found only one solution.

You might like to try these yourself and then check.

Example 2: Find the fourth root of −16i.

(−16i)1/4 = {16e3πi/2+2πir}1/4 = 2e2πi(3/16+r/4), r = 0, 1, 2, 3

Example 3: Find all the values of 1i.

1i = (e2πir)i = e−2πr, r any integer.

5. Polynomials: sums and products of roots

This is a theorem which is useful in complex number problems - and elsewhere. A polyno-
mial equation

azn + bzn−1 + czn−2 + · · ·+ f = 0

has n roots z1, z2 . . . zn, say. Then the sum and product of all the roots are

n∑
i=1

zi = −b/a,
n∏
i=1

zi = (−1)nf/a.

Demonstration for n = 4:

(z − z1)(z − z2)(z − z3)(z − z4) = z4 − (z1 + z2 + z3 + z4)z
3

+(z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4)z
2

−(z1z2z3 + z2z3z4 + z3z4z1 + z4z1z2)z + (z1z2z3z4).

6. Using complex numbers and the roots formulas to prove trig. identities

Example: By finding the roots of the equation

z2n+1 + 1 = 0 (4)

show that
n∑

r=−n
cos

(2r + 1)π

(2n+ 1)
= 0. (5)

We shall do this by using the sum of roots of a polynomial formula. First find the roots of
Eq. (4):

z = (−1)1/(2n+1) = e(iπ+2πir)/(2n+1) = e(2r+1)iπ/(2n+1), r = −n,−n+1,−n+2 . . . n−2, n−1, n

where I have chosen the 2n+ 1 values of r needed to specify distinct roots to match the limits
on the sum in the expression (5). Note that the roots are equispaced around the unit circle in
the complex plane. Eq. (4) has no term in zn so the sum of the roots is zero:

n∑
r=−n

e(2r+1)iπ/(2n+1) = 0.
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Taking the real part of both sides immediately gives Eq. (5).

C. OTHER APPLICATIONS OF COMPLEX NUMBERS

Here are two more examples of the use of complex numbers.

1. Summing trigonometric series

For example, to find

SI =
n∑
r=1

sin rθ.

consider

S =
n∑
r=1

(cos rθ + i sin rθ) =
n∑
r=1

eirθ.

This is a geometric progression with n terms. The first term is a = eiθ and the common ratio is
r = eiθ . So, summing,

S =
a(1− rn)

1− r
=
eiθ(1− einθ)

1− eiθ
.

We want SI = Im(S). The easiest way to find this is the ‘half-angle trick’. Factorise the brackets
in the numerator and denominator to give sin functions:

S =
eiθ einθ/2(e−inθ/2 − einθ/2)

eiθ/2(e−iθ/2 − eiθ/2)
= ei(n+1)θ/2

(
−2i sin(nθ/2)

−2i sin (θ/2)

)
=

{
cos

(n+ 1)θ

2
+ i sin

(n+ 1)θ

2

}
sin(nθ/2)

sin (θ/2)
.

from which we can immediately read off

SI =

{
sin

(n+ 1)θ

2

}
sin (nθ/2)

sin (θ/2)
.

2. Integration

To integrate

IR =

∫
eax cos bx dx

consider

I =

∫
eaxeibx dx =

e(a+ib)x

a+ ib
+ C =

ea(cos bx+ i sin bx)(a− ib)
a2 + b2

+ C.

Taking the real part of I gives

IR =
ea(a cos bx+ b sin bx)

a2 + b2
+ C.

Another way of finding I is to write

IR =

∫
eax

(eibx + e−ibx)

2
dx.

Check that this gives the same answer. The small advantage of this approach is that an imagi-
nary answer signals an error in arithmetic.

8



The short option Complex Variables covers much more interesting ways to use complex analysis
in integration.

D. FUNCTIONS OF A COMPLEX VARIABLE

1. Exponential

ez = ex+iy = exeiy = ex(cos y + i sin y)

2. Logarithms

ln z = ln (reiθ) = ln r + ln (eiθ) = ln r + iθ, n an integer

3. Trig. and hyperbolic

Recall

cos z =
eiz + e−iz

2
cosh z =

ez + e−z

2

sin z =
eiz − e−iz

2i
sinh z =

ez − e−z

2

so

sin iz = i sinh z sinh iz = i sin z

cos iz = cosh z cosh iz = cos z

4. Inverse trig. and hyperbolic

To find sin−1 z:
Let w = sin−1 z, then

z = sinw = eiw−e−iw
2i

eiw − 2iz − e−iw = 0

e2iw − 2izeiw − 1 = 0

This is a quadratic in eiw so

eiw = 2iz±(−4z2+4)1/2

2

= iz ± (1− z2)1/2

⇒ iw = ln{iz ± (1− z2)1/2}
sin−1 z = w = −i ln{(iz ± (1− z2)1/2}

9



II. FIRST ORDER DIFFERENTIAL EQUATIONS

0. Terminology

A differential equation is one involving derivatives, eg dy
dx , d2y

dx2
.

In an ordinary differential equation y depends on just one variable, y(x). An example is simple

harmonic motion d2y
dx2

= −k2y In a partial differential equation y depends on more than one

variable y(x, t). An example is the wave equation d2y
dx2

= 1
c2
d2y
dt2

.

The order of a differential equation is the order of the highest derivative. For example

d2y

dx2
+ 3

dy

dx
+ 6y = f(x)

is a second order, ordinary differential equation. The solution is y(x): y is called the dependent
variable, x is the independent variable.

An equation is linear if it is linear in the dependent variable. ie terms like y, d2y
dx2

can occur

in a linear differential equation, terms like y2, y dydx , sin y cannot.

1. Separable

A first order differential equation is separable if it can be written

dy

dx
=
f(x)

g(y)
.

Then ∫
g(y)dy =

∫
f(x)dx

which, with luck, can be integrated directly.

Example

dy

dx
= −y2ex ⇒ −

∫
dy

y2
=

∫
exdx ⇒ 1

y
= ex + C

1′. Almost separable

If
dy

dx
= f(ax+ by), a, b constants

a simple change of variable leads to a separable equation. Let

z = ax+ by ⇒ dz

dx
= a+ b

dy

dx
= a+ bf(ax+ by) = a+ bf(z)

which can be integrated by separation of variables∫
dz

a+ bf(z)
=

∫
dx
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Example

dy

dx
= (x+ 2y + 3)2 − 1

2

Let z = x+ 2y + 3. Then

dz

dx
= 1 + 2

dy

dx
= 1 + 2(z2 − 1

2
) = 2z2.

Integrating ∫
dz

z2
=

∫
2 dx ⇒ −1

z
= 2x+ C ⇒ −1

x+ 2y + 3
= 2x+ C

2. Homogeneous

If
dy

dx
= f

(y
x

)
the substitution v = y

x leads to a separable equation. Let

y = vx ⇒ dy

dx
= x

dv

dx
+ v = f(v) ⇒ dv

dx
=
f(v)− v

x
⇒

∫
dv

f(v)− v
=
dx

x
.

Example

dy

dx
=
y2 + xy

x2
=
y2

x2
+
y

x

Let v = y
x ⇒ y = vx ⇒ dy

dx = x dvdx + v = v2 + v ⇒∫
dv
v2

=
∫
dx
x ⇒ − 1

v = lnx+ lnC−1 = ln x
C ⇒ x = Ce−

1
v = Ce

−x
y .

2′. Homogeneous but for constant

Consider an equation like
dy

dx
=

y + x− 5

y − 3x− 1
. (6)

The numerator and denominator are linear and the equation is homogeneous apart from the
constants -5 and -1. These can be eliminated by changing variables to y′ = y + a, x′ = x + b,
where a and b are constants, with a sensible choice of a, b. Substituting the change of variable
in Eq. (6) gives

dy

dx
=
dy′

dx′
=

y′ − a+ x′ − b− 5

y′ − a− 3x′ + 3b− 1
.

The new equation, in the primed variables, will have no constant terms if a + b = −5 and
a− 3b = −1. So as long as there is a solution for a, b (see next section for what happens if not)
the differential equation becomes

dy′

dx′
=

y′ + x′

y′ − 3x′

which is homogeneous and can be solved using the substitution v = y′/x′.
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2′′. Looks like ‘homogeneous but for constant’ but is ‘almost separable’

A special case – what happens if there is no solutions for a, b?

Consider the differential equation
dy

dx
=

y − 3x− 2

2y − 6x− 5
. (7)

Substituting y′ = y + a, x′ = x+ b gives

dy′

dx′
=

y′ − a− 3x′ − 3b− 2

2y′ − 2a− 6x′ − 6b− 5
.

To get rid of the constant terms choose a+ 3b = −2, 2a+ 6b = −5. However these are parallel
lines in the (a, b) plane and there is therefore no solution. Oh dear! But looking carefully at
Eq. (7) it is apparent that the rhs is a function of just one variable, z = y−3x. This means that
it is ‘almost separable’ and method 1′ works. Partial fractions are needed to give a solution

1

25
(2u− lnu) = x+ C where u = −5(y − 3x) + 13.

3. Integrating factor

The most general linear, first-order equation is

dy

dx
+ P (x) y = Q(x)

because we can always divide through by the coefficient of dy
dx to make it unity. This equation

can be solved by multiplying through by the integrating factor

I ≡ e
∫
P (x) dx

to give
dy

dx
e
∫
P (x) dx + P (x) y e

∫
P (x) dx = Q(x) e

∫
P (x) dx.

Integrating

y e
∫
P (x) dx =

∫
Q(x) e

∫
P (x) dxdx.

(Differentiate back to check.) Hence

y = e−
∫
P (x) dx

∫
Q(x) e

∫
P (x) dxdx.

Example

x2
dy

dx
+ 3xy = 1

Divide through by the coefficient of the derivative to get the equation into standard form

dy

dx
+

3

x
y =

1

x2
.

Find the integrating factor

I = e
∫

3
x
dx = e3 lnx = elnx

3
= x3.
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Multiply both sides by I and integrate, don’t forget the constant

yx3 =

∫
x3

x2
dx =

x2

2
+ C

giving

y =
1

2x
+
C

x3
.

Remember

• The coefficient of dy
dx must be unity before calculating I.

• Remember to multiply both sides of the equation by I.

• Remember to add the constant of integration immediately after integrating.

4. The Bernoulli equation

The non-linear equation
dy

dx
+ P (x) y = Q(x) yn (8)

can be solved by the change of variable

z = y1−n,
dz

dx
= (1− n)y−n

dy

dx
.

Multiplying Eq. (8) by (1− n)y−n gives

(1− n)y−n
dy

dx
+ (1− n)P (x)y1−n = Q(x)(1− n).

Changing variables from y to z

dz

dx
+ (1− n)zP (x) = (1− n)Q(x)

which is a linear equation in z which can be solved by using an integrating factor.

5. Exact equations

The differential equation
dy

dx
= −p(x, y)

q(x, y)
(9)

can be integrated by inspection if ∂q
∂x = ∂p

∂y . This is because this equality of partial derivatives
is the condition for p(x, y)dx+ q(x, y)dy to be an exact derivative and so we may write

df =
∂f

∂x
dx+

∂f

∂y
dy = p(x, y)dx+ q(x, y)dy = 0

with a solution f=C.

Example

dy

dx
= −6x+ y + y2

x+ 2xy
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Comparing to Eq. (9), p(x, y) = 6x+y+y2, q(x, y) = x+2xy, ∂q
∂x = ∂p

∂y = 1+2y so the equation
is exact. Writing

df =
∂f

∂x
dx+

∂f

∂y
dy = (6x+ y + y2)dx+ (x+ 2xy)dy = 0

we can identify
∂f

∂x
= 6x+ y + y2,

∂f

∂y
= x+ 2xy.

So, by inspection, the differential equation can be integrated to give

f = xy + xy2 + 3x2 = C.

6. Oddments

1. ‘One-off’ changes of the dependent or independent variable sometimes work.

2. Don’t forget that equations like dy
dx = f(x) can be integrated directly.

3. If all else fails use a computer.

III. SECOND ORDER DIFFERENTIAL EQUATIONS

0. More terminology and the principle of superposition

A general, linear, second order differential equation takes the form

a(x)
d2y

dx2
+ b(x)

dy

dx
+ c(x)y = f(x).

If f(x) = 0 the equation is called homogeneous.
If f(x) 6= 0 the equation is called inhomogeneous.

Principle of superposition:
For linear, homogenous equations, if y1(x) and y2(x) are solutions then any linear combination
c1y1(x) + c2y2(x) is also a solution.
This can be demonstrated very easily. We know

a(x)
d2y1
dx2

+ b(x)
dy1
dx

+ c(x)y1 = 0, (10)

a(x)
d2y2
dx2

+ b(x)
dy2
dx

+ c(x)y2 = 0. (11)

Adding c1× Eq. (15) and c2× Eq. (16) shows that c1y1(x) + c2y2(x) is also a solution. (Check
that this no longer works if f(x) 6= 0.)

We shall focus on the case where the coefficients a(x), b(x), c(x) are constants, considering
first homogeneous equations, then inhomogeneous equations.
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1. Second order, linear, homogeneous differential equations with constant coef-
ficients

Consider the equation

a
d2y

dx2
+ b

dy

dx
+ cy = 0, a, b, c constants. (12)

Try a solution
y = aemx.

Differentiating and substituting into Eq. (12)

am2Aemx + bmAemx + cAemx = 0.

This gives the auxiliary equation

am2 + bm+ c = 0,

⇒ m =
−b± (b2 − 4ac)1/2

2a
. (13)

case 1: auxiliary equation has real roots b2 > 4ac

y = Ae

{
−b+(b2−4ac)1/2

2a

}
x

+Be

{
−b−(b2−4ac)1/2

2a

}
x

≡ e−
bx
2a (Aeαx +Be−αx), where α =

(b2 − 4ac)1/2

2a
.

Notes:
1. The two solutions can be added because of the principle of superposition.
2. Q: How do we know this is the most general solution?

A: It contains two arbitrary constants A,B which we expect for a second order differential
equation because we have integrated twice to reach the solution.

3. Q: How do we find A,B?
A: From the boundary conditions e.g. the values of y and dy

dx at x = 0.

case 2: auxiliary equation has complex roots b2 < 4ac

Taking a factor −1 out of the bracket in Eq. (13) **and noting that the term in the bracket is
then positive**

m =
−b± i(4ac− b2)1/2

2a
. (14)

So the general solution of the differential equation is

y = Ae

{
−b+i(4ac−b2)1/2

2a

}
x

+Be

{
−b−i(4ac−b2)1/2

2a

}
x

≡ e−
bx
2a (Aeiβx +Be−iβx), where β =

(4ac− b2)1/2

2a
.

There are other ways of writing this. Expanding the complex exponentials in terms of sin and
cos:

y = e−
bx
2a (A cosβx+ iA sinβx+B cosβx− iB sinβx)

= e−
bx
2a ((A+B) cosβx+ i(A−B) sinβx)

≡ e−
bx
2a (C cosβx+D sinβx) (15)
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where C and D are constants. Yet another way of writing the solution, where the two arbitrary
constants are now E and ϕ, is

y = e−
bx
2aE cos (βx− ϕ). (16)

Eqs. (15) and (16) are equivalent if E cosϕ = C, E sinϕ = D.
Choose the form of solution that is most convenient to match the boundary conditions. It is
fine to write down the expressions (15) and (16) directly from Eq. (14) without going through
all the intermediate steps.

case 3: auxiliary equation has repeated roots b2 = 4ac

If m = − b
2a then the solution is

y = e−
bx
2a (A+Bx).

To check that Bxe−
bx
2a is indeed a solution for m = − b

2a , differentiate and substitute back in to
Eq. (12).

2. The damped oscillator

To a good approximation, for small amplitude, many simple mechanical oscillators, e.g. a
mass on a spring or a pendulum, execute simple harmonic motion

d2y

dt2
+ ω2

0y = 0

where y is displacement, t is time, and ω0 is the natural frequency. Trying a solution y = Aemt

gives an auxiliary equation
m2 + ω2

0 = 0.

So m = ±iω0 and the solution is

y = C cosω0t+D sinω0t.

(You should be able to recognise the differential equation for simple harmonic motion and write
down the solution immediately.) The oscillations continue forever. However in any real system
there is damping. This is often well modeled as a term proportional to the velocity giving a
differential equation

d2y

dt2
+ γ

dy

dt
+ ω2

0y = 0.

The auxiliary equation is

m2 + γm+ ω2
0 = 0 ⇒ m =

−γ ± (γ2 − 4ω2
0)1/2

2
= −γ

2
±
(
γ2

4
− ω2

0

)1/2

.

The three possible behaviours of the solutions are:
(i) γ > 2ω0 overdamped

y = e−
γ
2
t(Ae(

γ2

4
−ω2

0)
1/2t +Be−(

γ2

4
−ω2

0)
1/2t)

(ii) γ = 2ω0 critically damped

y = e−
γ
2
t(At+B)
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Figure 3: Displacement with time of a damped oscillator. Note that the exact shape of the
curves also depends on the initial conditions, here ẋ = 0 and x > 0.

(iii) γ < 2ω0 underdamped

y = e−
γ
2
t

{
A cos

(
ω2
0 −

γ2

4

)1/2

t+B sin

(
ω2
0 −

γ2

4

)1/2

t

}
(17)

Check that this simplifies to the simple harmonic motion solution for γ = 0.

Notes:
1. Be carefully with the sign in the argument of the sin and cos in the underdamped case.
2. The maths of the LCR series circuit is identical. The differential equation is

L
d2I

dt2
+R

dI

dt
+
I

C
= 0.

3. Second order, linear, inhomogeneous differential equations with constant co-
efficients:

We aim to solve

a
d2y(x)

dx2
+ b

dy(x)

dx
+ cy(x) = f(x), a, b, c constants. (18)

Let the solution of Eq. (18) with f(x) = 0 be yCF (x). yCF (x) is called the complementary
function. We know how to find it from Sec. III.1.
Let any solution of Eq. (18) be yPI(x). yPI(x) is called the particular integral. We shall find
it by inspection/informed guesswork. It cannot be the general solution as it has no arbitrary
constants.
Then the sum y(x) = yCF (x) +yPI(x) is also a solution as can easily be checked by substituting
it into Eq. (18). This function does have 2 arbitrary constants, which appear in yCF , so it is the
general solution.

17



Summary: the solution of Eq. (18) is

y(x) = yCF(x) + yPI(x). (19)

Finding the particular integral

The strategy is to guess the particular integral based on the form of the inhomogeneous term f(x)
and then to find the constants by substituting the trial solution into the differential equation.
It is easiest to see how this works by trying a few examples.

f(x) guess for particular integral

polynomial of degree n polynomial of degree n
sum of sin ax, cos ax A sin ax+B cos ax
eax Aeax

Example 1:

Solve

2
d2y

dx2
− 7

dy

dx
+ 3y = 2x. (20)

First find the CF, the solution to Eq. (20) with the right hand side zero. Try a solution Aemx

giving the auxiliary equation 2m2 − 7m+ 3 = 0 with roots m = 3 and m = 1/2. So the CF is

yCF = Ae3x +Bex/2.

Next find the PI. The right hand side of the equation is a polynomial of degree 1 in x so try
yPI = αx+ β. Differentiating and substituting into Eq. (20) gives

−7α+ 3αx+ 3β = 2x.

This must be true for all x so matching the coefficients of x and the constants

−7α+ 3β = 0, 3α = 2 ⇒ α =
2

3
, β =

14

9

giving

yPI =
2

3
x+

14

9

and a general solution to Eq. (20)

y = Ae3x +Bex/2 +
2

3
x+

14

9
.

Example 2:

Solve

2
d2y

dx2
− 7

dy

dx
+ 3y = sin 4x. (21)

As for Example 1 the CF is
yCF = Ae3x +Bex/2.

18



Next find the PI. The right hand side is a sin function so try yPI = α sin 4x + β cos 4x. Differ-
entiating and substituting into Eq. (21) gives

−32α sin 4x− 32β cos 4x− 28α cos 4x+ 28β sin 4x+ 3α sin 4x+ 3β cos 4x = sin 4x

This must be true for all x so matching the coefficients of the sin terms and of the cos terms

sin 4x : −32α+ 28β + 3α = 1

cos 4x : −32β − 28α+ 3β = 0

⇒ α = − 29

1625
, β =

28

1625

giving

yPI = − 29

1625
sin 4x+

28

1625
cos 4x

and a general solution to Eq. (21)

y = Ae3x +Bex/2 − 29

1625
sin 4x+

28

1625
cos 4x.

Special cases:

If f(x) contains a term that appears in the CF add an extra factor x in the trial PI.

Example 3:

Solve

2
d2y

dx2
− 7

dy

dx
+ 3y = 4e3x. (22)

As before
yCF = Ae3x +Bex/2.

Next find the PI. The right hand side of the equation is an exponential so the first thought
is to try yPI = αe3x. However this will not work because it appears in the CF and therefore
when substituted into the left hand side of Eq. (22) it gives zero. Therefore try yPI = αxe3x.
(Why? Because lots of people have tried it and it works.) Differentiating yPI and substituting
into Eq. (22) gives

12αe3x + 18αxe3x − 7αe3x − 21αxe3x + 3αxe3x = 4e3x.

This must be true for all x. The terms in αxe3x cancel so we are left with the coefficients of
αe3x

5α = 4 ⇒ α =
4

5

giving

yPI =
4

5
αxe3x

and the general solution to Eq. (22)

y = Ae3x +Bex/2 +
4

5
αxe3x.

Example 4:
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The equation

4
d2y

dx2
+ 4

dy

dx
+ y = 4e−x/2 (23)

has an auxiliary equation with coincident roots. The CF is

yCF = e−x/2(Ax+B).

For the PI neither αe−x/2 nor αxe−x/2 will work as they both appear in the CF. Therefore try
αx2e−x/2. Check by substituting in to Eq. (23) that α = 1/2 giving the general solution

y = e−x/2(Ax+B) +
1

2
x2e−x/2.

Example 5:

This is one that can be confusing. The equation

d2y

dx2
− 2

dy

dx
+ 5y = sin 2x (24)

has an auxiliary equation with imaginary roots. The CF is

yCF = ex(A cos 2x+B sin 2x).

For the PI try yPI = α sin 2x+β cos 2x. This is fine as sin 2x and cos 2x are not solutions of the
homogeneous equation. (The solutions are ex cos 2x and ex sin 2x.)

Comments

1. If f(x) is a sum of terms, the PI is the sum of the PIs for each term. eg if

d2y

dx2
− 2

dy

dx
+ 5y = e2x + x3 (25)

try yPI = αe2x + βx3 + γx2 + δx+ ε.

2. If f(x) is a product of terms, the PI is the product of the PIs for each term. eg consider

4
d2y

dx2
+ 4

dy

dx
+ y = 4x2e−x/2.

Normally the trial PI would be yPI = (αx2+βx+γ)e−x/2. However the CF is yCF = e−x/2(Ax+
B) so the terms in β and γ cannot be used. Instead the trial PI must be yPI = (αx4 + βx3 +
γx2)e−x/2. Find the coefficients to show that Eq. (25) has the solution

y = e−x/2(Ax+B) +
1

12
x4e−x/2.

When in doubt add more terms to the trial PI. It is hard to go wrong (except in the arithmetic).
Too few terms will lead to equations that do not have a solution for α, β . . .. Too many terms,
and some of the α, β . . . will be zero.

4. Oddments
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a. Euler’s equation

Euler’s equation

ax2
d2y

dx2
+ bx

dy

dx
+ cy = f(x), a, b, c constants (26)

can be solved using the substitution x = et. Noting dx
dt = et = x, dt

dx = 1
x ,

dy

dx
=
dy

dt

dt

dx
=

1

x

dy

dt

d2y

dx2
= − 1

x2
dy

dt
+

1

x

d2y

dt2
dt

dx
= − 1

x2
dy

dt
+

1

x2
d2y

dt2
.

Substituting the derivatives into Eq. (26) gives

a
d2y

dt2
+ (b− a)

dy

dt
+ cy = f(t),

a second order, linear differential equation with constant coefficients that we know how to solve.

b. A useful formula that allows integration with respect to the dependent vari-
able

y′′ = y′
dy′

dy
where y′ =

dy

dx
, y′′ =

d2y

dx2
(27)

Proof:
d2y

dx2
=
dy′

dx
=
dy′

dy

dy

dx
= y′

dy′

dy

Example - simple harmonic motion

(Conventionally ẏ denotes a time derivative, y′ a derivative with respect to any other vari-
able.)
The equation of simple harmonic motion is

ÿ = −ω2y ⇒ ẏ
dẏ

dy
= −ω2y ⇒

∫
ẏ dẏ = −ω2

∫
y dy ⇒ ẏ2

2
= −ω

2y2

2
+ C.

Assume that at t = 0 y = 0 and ẏ = v0. Then C =
v20
2 and

ẏ = (v20 − ω2y2)1/2.

Integrating with respect to t∫
dy

(v20 − ω2y2)1/2
=

∫
dt ⇒ 1

ω
sin−1

ωy

v0
= t+ C

The boundary conditions give C = 0 and we are left with the familiar

y =
v0
ω

sinωt.

c. Dependent variable ‘missing’

If there is no term in y, let dy
dx = p and transform to a first order equation.
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Example:

d2y

dx2
+ 2

(
dy

dx

)2

= 0 ⇒ dp

dx
+ 2p2 = 0 ⇒ −

∫
dp

p2
= 2

∫
dx ⇒ 1

p
= 2x+ C.

Integrating again

p =
dy

dx
=

1

2x+ C
⇒ y =

1

2
ln (2x+ C).

IV. FORCED OSCILLATORS AND RESONANCE

1. The forced oscillator

The equation we will be considering in this section describes the physics of a forced, damped,
harmonic oscillator:

m
d2x

dt2
+mγ

dx

dt
+mω2

0x = F cosωt. (28)

Notation: m mass, x displacement, t time, γ damping coefficient, ω0 natural frequency of the
oscillator, F amplitude of the driving force, ω frequency of the driving force.

The first term is mass × acceleration.
The second term is the damping term which we assume is proportional to the velocity.
The third term is the restoring force, proportional to the displacement.
The final term is the harmonic driving force.

Note:
If F = 0 we recover the unforced damped, harmonic oscillator of Sec. 3.1.
If F = 0 and γ = 0 we are back to simple harmonic motion with natural frequency ω0.

2. Transient solution

The solution to Eq. (28) is the sum of the complementary function and the particular inte-
gral. The complementary function is just the solution found in Sec. III.2, Eq. (17), where we
assume light damping or else it would be a pretty useless oscillator:

xCF = e−
γ
2
t(A cosβt+B sinβt), β =

(
ω2
0 −

γ2

4

)1/2

. (29)

This is a transient solution. It depends on the initial conditions (which determine A and B)
and it decays to zero. In the steady state it will have died away and it can be ignored.

3. Steady state solution

On the basis of what we have covered so far, to find the steady state solution (ie the PI)
we would try x = D cosωt+E sinωt or, equivalently, x = C cos (ωt− ϕ). However it is MUCH
easier to use complex numbers as follows:
Consider

mẍR +mγẋR +mω2
0xR = F cosωt, (30)
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mẍI +mγẋI +mω2
0xI = F sinωt. (31)

Adding Eq. (30) +i× Eq. (31)

mẍ+mγẋ+mω2
0x = Feiωt (32)

where x = xR +xI . We shall solve Eq. (32) for x and take the real part of the answer to get the
solution of Eq. (30).

To find the PI of Eq. (32) try x = Ceiωt. Substituting in gives

−ω2mCeiωt +mγiωCeiωt +mω2
0Ce

iωt = Feiωt ⇒ C =
F

m{(ω2
0 − ω2) + iγω}

so

x =
Feiωt

m{(ω2
0 − ω2) + iγω}

. (33)

To obtain the real part of x, and get the solution in the most useful form to look at the physics,
we next write x in polar form. Note that

m{(ω2
0 − ω2) + iγω} = reiϕ where r = m

√
(ω2

0 − ω2)2 + γ2ω2, tanϕ =
γω

(ω2
0 − ω2)

. (34)

So the displacement, Eq. (33) becomes

x =
Feiωt(

m
√

(ω2
0 − ω2)2 + γ2ω2

)
eiϕ

=
Fe(iωt−ϕ)

m
√

(ω2
0 − ω2)2 + γ2ω2

.

Taking the real part

xR =
F cos (ωt− ϕ)

m
√

(ω2
0 − ω2)2 + γ2ω2

≡ A cos (ωt− ϕ). (35)

The steady state solution is harmonic. It has a different amplitude A, which differs from that
of the driving force, and it lags the driving force by a phase ϕ.

The derivation in this section is tricky at first but easy once you have practised it a few times.
You will have to do it often so it is worth getting it straight.

4. The amplitude response
We have just shown that, for a forcing term with amplitude F , the displacement x (we shall

lose the subscript R from now on) has amplitude

A =
F

m
√

(ω2
0 − ω2)2 + γ2ω2

. (36)

The variation of A with ω is plotted in Fig. . Note:

• As ω →∞, A→ 0. This is becaue the oscillator cannot respond if the driving is too fast.

• For ω = 0, A = f
mω2

0
. The static force is causing a Hookean displacement.
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𝛾=w0 

 

𝛾=w0/4 

Figure 4: Amplitude of a damped, harmonic oscillator for different damping strengths.

• The curve has a maximum at ω := ωR =
(
ω2
0 −

γ2

2

)1/2
.

Let’s confirm the last statement. A is a maximum when the denominator in Eq. (36) is a
minimum.

d

dω
{(ω2

0 − ω2)2 + γ2ω2} |ωR= 0 ⇒ −4ω(ω2
0 − ω2

R) + 2γ2ω = 0 ⇒ ω2
R = ω2

0 −
γ2

2
. (37)

Note:
Differentiating Eq. (35) gives the velocity response

ẋ =
−ωF sin (ωt− ϕ)

m
√

(ω2
0 − ω2)2 + γ2ω2

≡ −AV sin (ωt− ϕ) (38)

with amplitude

AV =
ωF

m
√

(ω2
0 − ω2)2 + γ2ω2

=
F

m

√
(
ω2
0
ω − ω)2 + γ2

(39)

ω’s only appear in the first bracket in the denominator in the last expression so we can read off
that the velocity amplitude has a maximum at ω = ω0.

5. Width of the resonance and the Q-factor

For small damping the amplitude response A(ω) can be very sharply peaked. This is called
resonance, and ωR is the resonant frequency. It is useful to have a measure of the width of the
resonance. A sensible definition is (see Fig. 5)

∆ω = ω2 − ω1 where A(ω1) = A(ω2) =
1√
2
A(ωR) (with ω2 > ωR > ω1).

(The choice of measuring the width of the curve at 1√
2
A(ωR) corresponds to the stored energy

∼ A2 being 1/2 of its maximum value.)
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Figure 5: Defining the width of the resonance.

To find ∆ω:

From Eq. (36)

A(ω1) =
F

m
√

(ω2
0 − ω2

1)2 + γ2ω2
1

=
1√
2
A(ωR) =

F
√

2m
√

(ω2
0 − ω2

2)2 + γ2ω2
2

⇒ (ω2
0 − ω2

1)2 + γ2ω2
1 = 2{(ω2

0 − ω2
R)2 + γ2ω2

R}.

Recall (Eq. (37)) that ω2
R = ω2

0 −
γ2

2 so ω2
0 − ω2

R = γ2

2 and substituting for ωR

(ω2
0 − ω2

1)2 + γ2ω2
1 = 2

{
γ4

4
+ γ2ω2

0 −
γ4

2

}
= 2γ2ω2

0 −
γ4

2
. (40)

This can be solved as a quadratic in ω2
1 but the answer is messy. It is much neater to identify a

small parameter and expand the solution in terms of it (a useful approach for many problems).
The relevant small parameter is γ because we expect, on physical grounds, that the damping is
small for a sharp resonance. γ has the dimensions of frequency so we may write

ω1 = ω0 + aγ +O(γ2) (41)

and see if we get a consistent solution. Noting that O(γ2)

(ω2
0 − ω2

1)2 = (ω0 − ω1)
2(ω0 + ω1)

2 ≈ a2γ24ω2
0

and substituting Eq. (41) into Eq. (40)

a2γ24ω2
0 + γ2ω2

0 = 2γ2ω2
0 ⇒ 4a2 = 1 ⇒ a = ±1

2
.

So
ω1 = ω0 −

γ

2
, ω2 = ω0 +

γ

2
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and, for small damping, the full width of the amplitude response is

∆ω = ω2 − ω1 = γ.

Comments:

1. ∆ω is related to the decay of free (unforced) oscillations, e−
γ
2
t, see Eq. (29). Small damping

⇒ slow decay of oscillations ⇒ sharp resonance.

2. The quality factor Q is a dimensionless measure of the width of the resonance.

Q = 2π
stored energy

energy lost per cycle
=
ω0

γ
.

So large Q ⇔ sharp resonance. We will prove this formula in the next section.

3. Note that the resonance frequency is the same as the natural frequency, ω0, for the velocity
amplitude but differs by a term O(γ2) for the displacement amplitude (Eq. (37)). Check
that the expression for ∆ω is the same to leading order in γ.

6. Power and Energy

Using Eq. (38) for the velocity of the oscillator we can write down the power supplied

P = driving force× velocity = F cosωt× −ωF sin (ωt− ϕ)

m
√

(ω2
0 − ω2)2 + γ2ω2

.

Averaging the time-dependent terms over a cycle, the mean power is

P̄ =
−ωF 2

m
√

(ω2
0 − ω2)2 + γ2ω2

cosωt sin (ωt− ϕ).

where

cosωt sin (ωt− ϕ) = cosωt sinωt cosϕ− cos2 ωt sinϕ = −1

2
sinϕ

because cosωt sinωt = 0 and cos2 ωt = 1
2 . So

P̄ =
ωF 2 sinϕ

2m
√

(ω2
0 − ω2)2 + γ2ω2

but, from Eq. (34),

tanϕ =
γω

(ω2
0 − ω2)

⇒ sinϕ =
γω√

(ω2
0 − ω2)2 + γ2ω2

so

⇒ P̄ =
γω2F 2

2m{(ω2
0 − ω2)2 + γ2ω2}

.

At ω = ω0

P̄ =
F 2

2mγ
.

You should check that this is the same as the energy lost per cycle of a lightly damped, unforced
oscillator (see problem set 3).
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The energy stored by the oscillator is

E =
1

2
mẋ2 +

1

2
mω2

0x
2

=
m

2

ω2F 2 sin2 (ωt− ϕ)

m2{(ω2
0 − ω2)2 + γ2ω2}

+
mω2

0

2

F 2 cos2 (ωt− ϕ)

m2{(ω2
0 − ω2)2 + γ2ω2}

=
F 2

2γ2m

at ω = ω0.
Hence the quality factor is

Q = 2π
stored energy

energy lost per cycle
= 2π

F 2

2γ2m

2mγ

F 2

ω0

2π
=
ω0

γ
.

7. Phase

Figure 6: Phase of a damped, harmonic oscillator.

We found in Sec. IV.3 that for a force F cosωt the displacement of a damped harmonic oscillator
is x = A cos (ωt− ϕ). The displacement lags the force by a phase ϕ, Eq. (34),

tanϕ =
γω

(ω2
0 − ω2)

.

The velocity of the oscillator is

ẋ = −ωA sin (ωt− ϕ) = ωA sin (ϕ− ωt) = ωA cos (
π

2
− ϕ+ ωt)

= ωA cos (ωt− (ϕ− π

2
) := ωA cos (ωt− ϕV )

so the velocity lags the force by ϕV = ϕ − π
2 . Note that the velocity and the driving force are

in phase at resonance.
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8. The LCR circuit

An example of a damped oscillator that can be described by identical mathematics is the series
LCR circuit, which you will cover in Circuit Theory lectures. For an inductance L, resistance
R and capacitance C, in series with an oscillating voltage V0 cosωt, Kirchoff’s law gives

L
dI

dt
+RI +

Q

C
= V0 cosωt

or, because I = dQ
dt ,

L
d2Q

dt2
+R

dQ

dt
+
Q

C
= V0 cosωt.

This is identical to Eq. (28) given the replacements L ⇔ m, R ⇔ mγ, 1
C ⇔ mω2

0, ω2
0 ⇔ 1

LC ,
γ ⇔ R

L . So the resonance condition for the displacement ⇔ charge is

ωR =

(
ω2
0 −

γ2

2

)1/2

⇔ ωR =

(
1

LC
− R2

2L2

)1/2

and for the velocity ⇔ current

ωV = ω0 ⇔ ωV =
1√
LC

.

V. COUPLED DIFFERENTIAL EQUATIONS

There are many ways to solve coupled differential equations. If you can see an easy way, use it.
Here are two approaches:

Method 1: Complementary function and particular integral

ẋ− x+ 2y = e2t, (42)

ẏ − y + 2x = 0. (43)

To find the complementary function try x = Aemt, y = Bemt ⇒

(m− 1)A+ 2B = 0,

2A+ (m− 1)B = 0.

These equations have a solution if the determinant of the coefficients∣∣∣∣∣ m− 1 2

2 m− 1

∣∣∣∣∣
is zero (see Vectors and Matrices lectures) giving m = −1, 3. If m = −1 B = A and if m = 3
B = −A so we may write down the complementary functions:

x = αe−t + βe3t,

y = αe−t − βe3t.

There are two arbitrary constants as expected for two first order differential equations.
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For the particular integral try x = De2t, y = Ee2t. Substituting in to Eqs. (43) gives D = −1
3 ,

E = 2
3 so the full solution is

x = αe−t + βe3t − 1

3
e2t,

y = αe−t − βe3t +
2

3
e2t.

Method 2: Differentiate one equation and substitute into the other

Using the same example

ẋ− x+ 2y = e2t,

ẏ − y + 2x = 0.

From the second equation

x =
y

2
− ẏ

2
⇒ ẋ =

ẏ

2
− ÿ

2
. (44)

Substituting into the first equation

ẏ

2
− ÿ

2
− y

2
+
ẏ

2
+ 2y = e2t ⇒ ÿ − 2ẏ − 3y = −2e2t.

Solving for the complementary function and particular integral in the usual way

y = αe−t − βe3t +
2

3
e2t.

Substituting for y and ẏ in Eq. (44) immediately gives

x = αe−t + βe3t − 1

3
e2t

as before.
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